

Journal of Alloys and Compounds 434-435 (2007) 796-798

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Catalytic properties of nanostructured Pt and Ru metal clusters over alumina promoted by CeO₂

K. Dossumov^{*}, R.Kh. Salakhova, N.M. Popova, S.A. Tungatarova, V.P. Grigorieva, L.V. Komashko, A.S. Sass

D.V. Sokolsky Institute of Organic Catalysis and Electrochemistry, 142 D, Kunaev str., Almaty 050010, Kazakhstan

Available online 20 December 2006

Abstract

0.5% Pt-0.5% Ru/2% Ce/($\theta + \alpha$)-Al₂O₃, reduced by H₂ at 1173 K, presents a mixture of Pt and Ru (3–30 nm) nanoparticles in reduced and partially oxidised condition surrounded by larger formations of surface compound CeAlO₃ with perovskite structure and oxide Ce₆O₁₁ (15–80 nm). High conversion of CH₄ and selectivity for CO and H₂ (close to 100%) at short contact times (2.35–8 × 10⁻³ s) are observed by using that catalyst in catalytic partial oxidation of CH₄ to synthesis-gas at 1173 K and atmospheric pressure. Methane is activated on Pt and Ru metal clusters while oxygen is activated on Ce oxide nanostructures.

© 2006 Published by Elsevier B.V.

Keywords: Clusters; Metals; Nanostructures; X-ray diffraction; Transmission electron microscopy

1. Introduction

Nano-size catalysts containing noble metals and applications of nanotechnology for development of the catalysts for catalytic partial oxidation (CPO) of CH₄ into synthesis-gas are a focus in heterogeneous catalysis during the last decade [1–4]. Recently, Pt and Ru containing catalysts were investigated extensively in reaction of CPO at short contact times [2,5]. Pt-Ru-Ce-catalysts are effective in complex purification of waste gases of internal combustion engines from CO, NO and C_3H_6 (C_3H_8) in the presence of oxygen [6].

It was established [7] that reduced Pt-Ru-Ce-catalyst is a mixture of CeO₂, CeAlO₃ and unconnected superfine metal particles of platinum and ruthenium. Ruthenium can be easily converted to RuO₂ and again reduced to Ru at low temperatures (433–443 K). It is probable that the stabilization of Pt and Ru in an oxidizing atmosphere is provided due to formation of surface compound CeAlO₃ with perovskite structure with interaction of the carrier (Al₂O₃) with cerium ions and ruthenium.

The aim of this work was the investigation of the activity and structure of low-percentage catalysts based on Pt-Ru-Ce due to easy reducibility and stabilization of Ru in the presence of

0925-8388/\$ - see front matter © 2006 Published by Elsevier B.V. doi:10.1016/j.jallcom.2006.08.187

cerium in reaction of partial oxidation of methane into synthesisgas (CH₄ + $\frac{1}{2}O_2 \rightarrow CO + 2H_2$) at short contact times.

2. Experimental

The catalyst was prepared by consecutive impregnation of dispersed $(\theta + \alpha)$ -Al₂O₃ (particle size between 40 and 50 µm) with water solutions of salts Ce(NO₃)₃·6H₂O, Ru(OH)Cl₃ and H₂PtCl₆·6H₂O with subsequent heating in air at 873 K for 3 h. The catalyst was reduced in a mixture of H₂/Ar = 40 vol.%/60 vol.% within 1 h at 1173 K before the CPO of methane.

Initial reaction mixture ($CH_4/O_2/Ar = 1.5 \text{ vol.}\%/0.75 \text{ vol.}\%/97.75 \text{ vol.}\%)$ was supplied into reactor. An Agilent 6890N gas chromatograph equipped with an FID and TCD was employed for the on-line analysis of the products.

Phase structure of catalysts was recorded using X-ray diffraction (XRD) DRON-4-7, operating at 25 kV and 25 mA and employing Co K α radiation, covering 2 θ between 5 and 80°. Morphology, particles size, chemical composition of initial and final catalysts after 56h were performed on transmission electron microscope TEM-125 K with enlargement up to 133,000 times by replica method with extraction and micro diffraction. Carbonic replicas were sputtered in a vacuum universal station, and carrier of the catalysts was dissolved in HF. Identification of micro diffraction patterns were carried out using the ASTM cart index (1986).

3. Results and discussion

The activity of pre-reduced 0.5%Pt-0.5%Ru/2%Ce/($\theta + \alpha$)-Al₂O₃ catalyst in catalytic oxidation of methane was investigated at 1173 K and short contact times (τ) of 2.35–8 ms. Alteration of CH₄ conversion (X_{CH_4}), selectivity for CO (S_{CO}),

^{*} Corresponding author. Tel.: +7 3272 91 64 73; fax: +7 3272 91 57 22. *E-mail address:* tungatarova58@mail.ru (K. Dossumov).

Table 1 Alteration of CH₄ conversion, selectivity by CO, H₂, CO₂ and H₂/CO depending on duration of experiment at T = 1173 K on 0.5%Pt-0.5%Ru/2%Ce/($\theta + \alpha$)-Al₂O₃ catalyst

Time (h)	$X_{{ m CH}_4}~(\%)$	$S_{ m CO}~(\%)$	$S_{{ m H}_2}~(\%)$	$S_{\rm CO_2}~(\%)$	H ₂ /CO
0.2	84.3	95.8	98.7	4.2	2.06
0.6	77.1	97.2	96.8	2.8	1.99
1.0	72.9	95.1	99.5	4.9	2.09
1.7	58.6	93.9	100	6.1	2.13
2.7	57.1	87.5	100	12.5	2.13

H₂ (*S*_{H₂}) and H₂/CO depending on duration of experiment are presented in Table 1. It was shown that CPO of CH₄ resulted in selective formation of synthesis-gas (H₂/CO = 1.99–2.13) and decrease of methane conversion from 84.2 to 57.1%. Alterations of CH₄ conversion and selectivity for CO and H₂ depend upon the contact time (τ) of Pt-Ru catalyst and are presented in Fig. 1. The highest conversion of methane (100%) and selectivity for CO and H₂ (99.6 and 100%) were observed at τ = 3.25 ms (*W*=1.17 × 10⁶ h⁻¹). An insignificant amount of CO₂ (*S*_{CO₂} = 0.4%) was detected in the products.

Fig. 1. Catalytic conversion of CH₄ to synthesis-gas on 0.5%Pt-0.5%Ru/ 2%Ce/($\theta + \alpha$)-Al₂O₃ at different contact times. $W = 1,440,000 h^{-1}$, CH₄:O₂ = 2, T = 1173 K. (1) X_{CH_4} ; (2) S_{CO} ; (3) S_{H_2} ; (4) S_{CO_2} .

0.5%Pt-0.5%Ru/2%Ce/($\theta + \alpha$)-Al₂O₃, reduced in H₂ at 1173 K is a mixture of CeO₂, Ce₆O₁₁, surface compound CeAlO₃ with perovskite structure and nanostructured clusters of Pt and Ru in reduced and partially oxidised condition according to XRD.

Fig. 2. TEM images of various phases of the fresh 0.5%Pt-0.5%Ru/2%Ce/ $(\theta + \alpha)$ -Al₂O₃ and reduced catalyst in H₂ at 1173 K (a and b) and with CPO during 8.5 h (c and d).

TEM images of various phases of fresh 0.5%Pt-0.5%Ru/ 2%Ce/($\theta + \alpha$)-Al₂O₃ catalyst and reduced in H₂ at 1173 K (a and b) and after CPO during 8.5 h (c and d) are shown in Fig. 2.

The large-sized aggregates of semi-transparent 6-8 nm sized particles of Ce₆O₁₁ phase are presented in Fig. 2a. Typical morphology of the Pt nanoparticles is shown in Fig. 2b. Pt presents single 3–4 nm sized particles which are distributed on the surface of the carrier.

Enlargement of Ce_6O_{11} nanoparticles up to 80 nm (Fig. 2c) occurred in reducing atmosphere after processing in reaction conditions. The dense nanoparticles of metallic ruthenium with size 10–20 nm are presented in Fig. 2d.

4. Conclusion

0.5%Pt-0.5%Ru/2%Ce/($\theta + \alpha$)-Al₂O₃, reduced in H₂ at 1173 K partially oxidises methane into synthesis-gas at short contact times with high conversion of methane and selectivity for CO and H₂ (close to 100%) at $\tau = 3.27$ ms due to the presence of nanoparticles of Pt and Ru. Increasing of contact time reduced slightly the conversion of CH₄ to 82% and selectivity by CO and H₂. The ratio H₂/CO was close to 2. Such ratio is ideal for synthesis of methanol and hydrocarbons. The

results confirm well-known data about high selectivity of ruthenium in the case of injecting of CeO₂ and CPO of CH₄ with $X_{CH_4} = 74\%$ [8]. In our investigation the promotion of Ru by Pt and supported over stabilised 2%Ce/ θ -Al₂O₃ at high selectivity raises the degree of methane conversion up to 100% at short contact times. The data indicate formation of Pt°, Ru°, Ce₆O₁₁ and CeAlO₃ clusters. It is suggested that improvement of reaction parameters over mixed Pt-Ru catalyst on 2%Ce/ θ -Al₂O₃ could be caused by division of activation functions of reactants: CH₄-on Pt°, O₂-on Ru° or Ce₆O₁₁. It is possible that surface CeAlO₃ perovskite promotes stabilisation of Pt and Ru on carrier (Al₂O₃).

References

- [1] H.H. Kung, M.C. Kung, Catal. Today 97 (2004) 219.
- [2] I. Balint, A. Miyazaki, K. Aika, J. Catal. 220 (2003) 74.
- [3] F. Basile, G. Fornasary, M. Gazzano, A. Kienemann, et al., J. Catal. 217 (2003) 245.
- [4] R. Jin, Y. Chen, W. Li, W. Cui, et al., Appl. Catal. A: Gen. 201 (2000) 71.
- [5] P. Pantu, G.R. Gavalas, Appl. Catal. A: Gen. 223 (2002) 253.
- [6] N.M. Popova, N.A. Antonova, E.M. Moroz, Kinet. Katal. 38 (1997) 757.
- [7] N.M. Popova, N.A. Antonova, A.S. Sass, E.M. Moroz, et al., Kinet. Katal. 38 (1997) 749.
- [8] H. Nishimoto, K. Nakagawa, et al., Catal. Lett. 89 (2002) 161.